问题如标题,使用正则表达式匹配字段目前无非就三种,分别是:

re.match()
re.search()
re.findall()

简单介绍一下,re.match()与re.search()非常类似,主要区别就是前者是从目标字符串的开头匹配,而后者则要没有这个要求。而re.findall()则是可以返回匹配的所有结果。但是有时候re.findall()返回的结果和前面两个并不一样,我们来看下面一个例子:
对于句子:

起病以来,患者无腰背痛、颈痛,无咽痛、口腔溃疡,无光过敏、脱发,无口干、眼干,无肢端发作性青紫,无肢体乏力,无浮肿、泡沫尿,精神、食欲、睡眠欠佳,近1月大便干结,5-6天1次,无腹痛、黑便、便血,小便1-2小时1次,无尿痛、血尿。体重未见明显变化。

我想使用正则去匹配所有包含小便和尿相关的子句,目的就是将“无浮肿、泡沫尿”和“小便1-2小时1次,无尿痛、血尿。”识别出来并且将这些子句返回。
本来我想使用re.findall()去匹配:

import re
lines = [
 "起病以来,患者无腰背痛、颈痛,无咽痛、口腔溃疡,无光过敏、脱发,无口干、眼干,无肢端发作性青紫,无肢体乏力,无浮肿、泡沫尿,精神、食欲、睡眠欠佳,近1月大便干结,5-6天1次,无腹痛、黑便、便血,小便1-2小时1次,无尿痛、血尿。体重未见明显变化。",
 ]
for line in lines:
 pattern = "[,;.,;。]+[^,;.,;。]*((小便)|尿)+[^,;.,;。]*[,;.,;。]+"
 str = re.findall(pattern,line)
 print(str)

结果为:

[('尿', ''), ('小便', '小便')]

这里说明一下我使用的模式的意义,因为我是要匹配子句,所以一个子句的前后必然会有相应的符号,所以pattern前面和后面均添加了“[,;.,;。]+”;“+”表示至少匹配一个。而后面的“[,;.,;。]*”表示匹配0个或多个除标点符号“,;.,;。”的任意字符,这里分别添加了中英文的逗号、分号和句号,“*”表示匹配0个或1个及以上。需要说明的是,这里我之所以使用“[,;.,;。]”,是因为文本中可能包含很多其他的符号,像上例中出现的“-”;所以想要使用汉字、数字、特定符号来匹配的话可能会存在遗漏,而我的目的是只想要得到匹配的子句,所以使用“[^,;.,;。]”会更通用一些。接下来就是“((小便)|尿)”意思是匹配含有“小便”或者含有“尿”的子串。
但是使用re.findall()所得到的结果并不是我想要的,于是我稍微换了一下匹配规则,将“((小便)|尿)+”换成了“[(小便)|尿]+”;为了验证匹配的适用性,我又添加了两个样本。总体如下:

import re
lines = [
 "起病以来,患者无腰背痛、颈痛,无咽痛、口腔溃疡,无光过敏、脱发,无口干、眼干,无肢端发作性青紫,无肢体乏力,无浮肿、泡沫尿,精神、食欲、睡眠欠佳,近1月大便干结,5-6天1次,无腹痛、黑便、便血,小便1-2小时1次,无尿痛、血尿。体重未见明显变化。",
 "起病以来,睡眠、胃纳正常,小便正常,近4~5年来每天解大便3~4次,多为黄褐色成形软便,偶有解烂便,有排便不尽感,便血、解黑便,无消瘦。",
 "身材矮小,体重较同龄人轻。"
]
for line in lines:
 pattern = "[,;.,;。]+[^,;.,;。]*[(小便)尿]+[^,;.,;。]*[,;.,;。]+"
 str = re.findall(pattern,line)
 print(str)

结果为:

[',无浮肿、泡沫尿,', ',近1月大便干结,', ',无腹痛、黑便、便血,', ',无尿痛、血尿。']
[',小便正常,', ',多为黄褐色成形软便,', ',有排便不尽感,']
[]

倒是匹配出了子句,一则是“小便1-2小时1次,无尿痛、血尿”中的“小便1-2小时1次”没有匹配出来,二则是竟然连大便相关的“近1月大便干结”和“无腹痛、黑便、便血”都匹配出来了,看来“[(小便)尿]”的意思并不是匹配含有“小便”或者“尿”的子串;那“[(小便)尿]”的意思是不是匹配含有“小”、“便”、“尿”任意一个的子串呢?但是根据第三个含有“小”但是不含“便”与“尿”的样本可以看出,上述的想法依然不对。
再加上re.findall()没有匹配到的子串在原始文本中的开始和结束位置,所以我想要得到“小便1-2小时1次,无尿痛、血尿。”这种两个子句连在一起的情况也很难得到。
于是我转而使用另一个很常用的re.search()方法。

import re
lines = [
 "起病以来,患者无腰背痛、颈痛,无咽痛、口腔溃疡,无光过敏、脱发,无口干、眼干,无肢端发作性青紫,无肢体乏力,无浮肿、泡沫尿,精神、食欲、睡眠欠佳,近1月大便干结,5-6天1次,无腹痛、黑便、便血,小便1-2小时1次,无尿痛、血尿。体重未见明显变化。",
]
for line in lines:
 pattern = "[,;.,;。]+[^,;.,;。]*((小便)|尿)+[^,;.,;。]*[,;.,;。]+"
 str = re.search(pattern, line)
 print(str.group())

结果为:

,无浮肿、泡沫尿,

可见,re.search()只匹配遇到的第一个满足条件的子串。
而如果将pattern中的“((小便)|尿)”修改为“[(小便)|尿]”(或者“[(小便)尿]”,意思是完全一样的,也试过)
得到的结果为:

,无浮肿、泡沫尿,

可见修改前后并没有任何变化,但是如果我将原始文本中的“无浮肿、泡沫尿”中的“尿”删除,则修改前的结果为:

,小便1-2小时1次,

修改后的结果为:

,近1月大便干结,

也就是说对于

pattern = "[,;.,;。]+[^,;.,;。]*[(小便)尿]+[^,;.,;。]*[,;.,;。]+"

无论是re.findall()还是re.search(),都能匹配到大便相关的子串;
而对于:

pattern = "[,;.,;。]+[^,;.,;。]*((小便)|尿)+[^,;.,;。]*[,;.,;。]+"

re.findall()和re.search()匹配的子串就有所区别了,前置匹配的结果是含有元组的列表:[(‘尿', ‘'), (‘小便', ‘小便')];而后者匹配到了我想要的子串:,无浮肿、泡沫尿,
后来问了同事以及进一步了解了正则的运行机制后,发现小括号()除了提取匹配的字符串,还有一个作用是用来捕获分组的,也就是说小括号中的内容匹配后会被存储起来,在调用的时候便会返回相应的值。而使用re.findall()时会将存储分组的值全部返回。
再举个例子会更加明白些,将上述pattern中的“((小便)|尿)”改为“((小便)|(尿))”,如:

pattern = "[,;.,;。]+[^,;.,;。]*((小便)|(尿))+[^,;.,;。]*[,;.,;。]+"

使用re.findall()输出的结果为:

[('尿', '', '尿'), ('小便', '小便', '')]

由上可知,“((小便)|(尿))”使用了三个“()”,于是便产生了三个分组,在最外围的第一个分组用于捕获“小便”或“尿”,原文中“小便”和“尿”都能匹配到,所以第一个位置两者都有;第二个分组是用来捕获“(小便)”的,所以第二个分组只存储“小便”;同理第三个分组用来捕获“(尿)”的,所以结果只存储了“尿”。
而我使用re.search()来输出分组结果:

for line in lines:
    pattern = "[,;.,;。]+[^,;.,;。]*((小便)|(尿))+[^,;.,;。]*[,;.,;。]+"
    str = re.search(pattern, line)
    print(str.group(0))
    print(str.group(1))
    print(str.group(2))
    print(str.group(3))

结果为:

,无浮肿、泡沫尿,
尿
None
尿

group(1)、group(2)、group(3)分别与(‘尿', ‘', ‘尿')中对应的分组结果相同。但是这里的group(0)(或者说group(),两个意思完全一样)却不是“(‘尿', ‘', ‘尿')”;这里作者水平有限,不是很清楚原因,也就是说,当调用group(0)的时候,pattern中的()的意义并不再是捕获分组了,而是回到了原始的提取匹配字符串的意思上来了。
为了解决

pattern = "[,;.,;。]+[^,;.,;。]*[(小便)尿]+[^,;.,;。]*[,;.,;。]+"

会匹配到不想要的含有“大便”字符串的问题,通过使用非捕获分组("htmlcode">

pattern = "[,;.,;。]"

此时便是匹配“小便”或者“尿”了;结果为:

[',无浮肿、泡沫尿,', ',小便1-2小时1次,', '无尿痛、血尿。']

注意上述结果,由于“,小便1-2小时1次,”和“无尿痛、血尿。”是紧接着的,而逗号已经被分配给了前者,所以后者便没有了逗号,这看起了有点像字符串的切片,被切走了就没了,所以这里在pattern中的第一个“[,;.,;。]”后面将“+”换成了“"htmlcode">

pattern = "[,;.,;。]"

可以看到,将pattern中第二个“[^,;.,;。]”变为“."htmlcode">

for line in lines:
 #pattern = "[,;.,;。]+[^,;.,;。]*[('小便')尿]+[^,;.,;。]*[,;.,;。]+"
 pattern = "[,;.,;。]"
 #pattern = "[,;.,;。]"

 str = re.findall(pattern,line)
 ls = [',',';','.',',',';','。']
 for idx, text in enumerate(str):
  if text[0] not in ls:
   str[idx-1] += text
   str.remove(text)

 print(str)

结果为:

[',无浮肿、泡沫尿,', ',小便1-2小时1次,无尿痛、血尿。']

而如果使用re.search(),也是可以达到预期的,代码如下:

for line in lines:
 result = []
 num = -1
 while line:
  #pattern = re.compile(r"[,;.,;。]+[^,;.,;。]*((小便)|尿)+[^,;.,;。]*[,;.,;。]+")
  #str = pattern.search(line)
  pattern = r"[,;.,;。]+[^,;.,;。]*((小便)|尿)+[^,;.,;。]*[,;.,;。]+"
  str = re.search(pattern,line)
  if str == None:
   break
  tmp = str.group()
  if str.start() == 0:
   result[-1] += tmp[1:]
  else:
   result.append(tmp[1:])
  #print(tmp)
  num = str.end() - 1
  #print(num)
  line = line[num:]
 print(result)

结果为:

['无浮肿、泡沫尿,', '小便1-2小时1次,无尿痛、血尿。']

标签:
python,正则表达式提取字段,正则表达式字段提取

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
桃源资源网 Design By www.nqtax.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。