背景:

表空间:INNODB 所有数据都存在表空间当中(共享表空间),要是开启innodb_file_per_table,则每张表的数据会存到单独的一个表空间内(独享表空间)。
独享表空间包括:数据,索引,插入缓存,数据字典。共享表空间包括:Undo信息(不会回收<物理空间上>),双写缓存信息,事务信息等。
段(segment):组成表空间,有区组成。
区(extent):有64个连续的页组成。每个页16K,总共1M。对于大的数据段,每次最后可申请4个区。
页(page):是INNODB 磁盘管理的单位,有行组成。
行(row):包括事务ID,回滚指针,列信息等。

目的1:
了解表空间各个页的信息和溢出行数据存储的信息。通过该书作者蒋承尧编写的工具:http://code.google.com/p/david-mysql-tools/source/browse/trunk/py_innodb_page_type/
3个脚本:

py_innodb_page_info.py

View Code 

#! /usr/bin/env python 
#encoding=utf-8
import mylib
from sys import argv
from mylib import myargv

if __name__ == '__main__':
 myargv = myargv(argv)
 if myargv.parse_cmdline() == 0:
  pass
 else:
  mylib.get_innodb_page_type(myargv)

mylib.py

View Code 

encoding=utf-8
import os
import include
from include import *

TABLESPACE_NAME='D:\\mysql_data\\test\\t.ibd'
VARIABLE_FIELD_COUNT = 1
NULL_FIELD_COUNT = 0

class myargv(object):
 def __init__(self, argv):
  self.argv = argv
  self.parms = {}
  self.tablespace = ''

 def parse_cmdline(self):
  argv = self.argv
  if len(argv) == 1:
   print 'Usage: python py_innodb_page_info.py [OPTIONS] tablespace_file'
   print 'For more options, use python py_innodb_page_info.py -h'
   return 0
  while argv:
   if argv[0][0] == '-':
    if argv[0][1] == 'h':
     self.parms[argv[0]] = ''
     argv = argv[1:]
     break
    if argv[0][1] == 'v':
     self.parms[argv[0]] = ''
     argv = argv[1:]
    else:
     self.parms[argv[0]] = argv[1]
     argv = argv[2:]
   else:
    self.tablespace = argv[0]
    argv = argv[1:]
  if self.parms.has_key('-h'):
   print 'Get InnoDB Page Info'
   print 'Usage: python py_innodb_page_info.py [OPTIONS] tablespace_file\n'
   print 'The following options may be given as the first argument:'
   print '-h  help '
   print '-o output put the result to file'
   print '-t number thread to anayle the tablespace file'
   print '-v  verbose mode'
   return 0
  return 1

def mach_read_from_n(page,start_offset,length):
 ret = page[start_offset:start_offset+length]
 return ret.encode('hex')

def get_innodb_page_type(myargv):
 f=file(myargv.tablespace,'rb')
 fsize = os.path.getsize(f.name)/INNODB_PAGE_SIZE
 ret = {}
 for i in range(fsize):
  page = f.read(INNODB_PAGE_SIZE)
  page_offset = mach_read_from_n(page,FIL_PAGE_OFFSET,4)
  page_type = mach_read_from_n(page,FIL_PAGE_TYPE,2)
  if myargv.parms.has_key('-v'):
   if page_type == '45bf':
    page_level = mach_read_from_n(page,FIL_PAGE_DATA+PAGE_LEVEL,2)
    print "page offset %s, page type <%s>, page level <%s>"%(page_offset,innodb_page_type[page_type],page_level)
   else:
    print "page offset %s, page type <%s>"%(page_offset,innodb_page_type[page_type])
  if not ret.has_key(page_type):
   ret[page_type] = 1
  else:
   ret[page_type] = ret[page_type] + 1
 print "Total number of page: %d:"%fsize
 for type in ret:
  print "%s: %s"%(innodb_page_type[type],ret[type])

include.py

View Code 

#encoding=utf-8
INNODB_PAGE_SIZE = 16*1024*1024

# Start of the data on the page
FIL_PAGE_DATA = 38


FIL_PAGE_OFFSET = 4 # page offset inside space
FIL_PAGE_TYPE = 24 # File page type

# Types of an undo log segment */
TRX_UNDO_INSERT = 1
TRX_UNDO_UPDATE = 2

# On a page of any file segment, data may be put starting from this offset
FSEG_PAGE_DATA = FIL_PAGE_DATA

# The offset of the undo log page header on pages of the undo log
TRX_UNDO_PAGE_HDR = FSEG_PAGE_DATA

PAGE_LEVEL = 26 #level of the node in an index tree; the leaf level is the level 0 */

innodb_page_type={
 '0000':u'Freshly Allocated Page',
 '0002':u'Undo Log Page',
 '0003':u'File Segment inode',
 '0004':u'Insert Buffer Free List',
 '0005':u'Insert Buffer Bitmap',
 '0006':u'System Page',
 '0007':u'Transaction system Page',
 '0008':u'File Space Header',
 '0009':u'扩展描述页',
 '000a':u'Uncompressed BLOB Page',
 '000b':u'1st compressed BLOB Page',
 '000c':u'Subsequent compressed BLOB Page',
 '45bf':u'B-tree Node'
 }

innodb_page_direction={
 '0000': 'Unknown(0x0000)',
 '0001': 'Page Left',
 '0002': 'Page Right',
 '0003': 'Page Same Rec',
 '0004': 'Page Same Page',
 '0005': 'Page No Direction',
 'ffff': 'Unkown2(0xffff)'
}


INNODB_PAGE_SIZE=1024*16 # InnoDB Page 16K

测试1:

root@localhost : test 02:26:13>create table tt(id int auto_increment,name varchar(10),age int,address varchar(20),primary key (id))engine=innodb;
Query OK, 0 rows affected (0.17 sec)
root@zhoujy:/var/lib/mysql/test# ls -lh tt.ibd 
-rw-rw---- 1 mysql mysql 96K 2012-10-17 14:26 tt.ibd

查看ibd:

root@zhoujy:/home/zhoujy/jiaoben/read_ibd# python py_innodb_page_info.py /var/lib/mysql/test/tt.ibd -v
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000> ---叶子节点
page offset 00000000, page type <Freshly Allocated Page>
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 6: 
Freshly Allocated Page: 2
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 1
File Segment inode: 1

解释:
Total number of page: 总页数
Freshly Allocated Page:可用页
Insert Buffer Bitmap:插入缓存位图页
Insert Buffer Free List:插入缓存空闲列表页
B-tree Node:数据页
Uncompressed BLOB Page:二进制大对象页,存放溢出行的页,即溢出页
上面得到的信息是表初始化大小为96K,他是有 Total number of page * 16 得来的。1个数据页,2个可用页面。

root@localhost : test 02:42:58>insert into tt values(name,age,address) values('aaa',23,'HZZZ');

疑惑:为什么没有申请区?区是64个连续的页,大小1M。那么表大小也应该是至少1M。但是现在只有96K(默认)。原因是因为每个段开始的时候,先有32个页大小的碎片页存放数据,使用
完之后才是64页的连续申请,最多每次可以申请4个区,保证数据的顺序。这里看出表大小增加是按照至少64页的大小的空间来增加的,即1M增加。
验证:
填充数据,写满这32个碎片页,32*16 = 512K。看看是否能申请大于1M的空间。

View Code 

root@zhoujy:/home/zhoujy/jiaoben/read_ibd# ls -lh /var/lib/mysql/test/tt.ibd 
-rw-rw---- 1 mysql mysql 576K 2012-10-17 15:30 /var/lib/mysql/test/tt.ibd
root@zhoujy:/home/zhoujy/jiaoben/read_ibd# python py_innodb_page_info.py /var/lib/mysql/test/tt.ibd -v
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>
page offset 00000004, page type <B-tree Node>, page level <0000>
page offset 00000005, page type <B-tree Node>, page level <0000>
page offset 00000006, page type <B-tree Node>, page level <0000>
page offset 00000007, page type <B-tree Node>, page level <0000>
page offset 00000008, page type <B-tree Node>, page level <0000>
page offset 00000009, page type <B-tree Node>, page level <0000>
page offset 0000000a, page type <B-tree Node>, page level <0000>
page offset 0000000b, page type <B-tree Node>, page level <0000>
page offset 0000000c, page type <B-tree Node>, page level <0000>
page offset 0000000d, page type <B-tree Node>, page level <0000>
page offset 0000000e, page type <B-tree Node>, page level <0000>
page offset 0000000f, page type <B-tree Node>, page level <0000>
page offset 00000010, page type <B-tree Node>, page level <0000>
page offset 00000011, page type <B-tree Node>, page level <0000>
page offset 00000012, page type <B-tree Node>, page level <0000>
page offset 00000013, page type <B-tree Node>, page level <0000>
page offset 00000014, page type <B-tree Node>, page level <0000>
page offset 00000015, page type <B-tree Node>, page level <0000>
page offset 00000016, page type <B-tree Node>, page level <0000>
page offset 00000017, page type <B-tree Node>, page level <0000>
page offset 00000018, page type <B-tree Node>, page level <0000>
page offset 00000019, page type <B-tree Node>, page level <0000>
page offset 0000001a, page type <B-tree Node>, page level <0000>
page offset 0000001b, page type <B-tree Node>, page level <0000>
page offset 0000001c, page type <B-tree Node>, page level <0000>
page offset 0000001d, page type <B-tree Node>, page level <0000>
page offset 0000001e, page type <B-tree Node>, page level <0000>
page offset 0000001f, page type <B-tree Node>, page level <0000>
page offset 00000020, page type <B-tree Node>, page level <0000>
page offset 00000021, page type <B-tree Node>, page level <0000>
page offset 00000022, page type <B-tree Node>, page level <0000>
page offset 00000023, page type <B-tree Node>, page level <0000>
Total number of page: 36:
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 33
File Segment inode: 1

"额外"页:4个
page offset 00000000, page type <File Space Header> :文件头空间页
page offset 00000001, page type <Insert Buffer Bitmap>:插入缓存位图页
page offset 00000002, page type <File Segment inode>:文件段节点
page offset 00000003, page type <B-tree Node>, page level <0001>:根页
碎片页:32个
page type <B-tree Node>, page level <0000>
总共36个页,ibd大小 576K的由来:32*16=512K(碎片页)+ 4*16=64(额外页),这里开始要是再插入的话,应该申请最少1M的页:

root@zhoujy:/home/zhoujy/jiaoben/read_ibd# ls -lh /var/lib/mysql/test/tt.ibd 
-rw-rw---- 1 mysql mysql 2.0M 2012-10-17 16:10 /var/lib/mysql/test/tt.ibd
root@zhoujy:/home/zhoujy/jiaoben/read_ibd# python py_innodb_page_info.py /var/lib/mysql/test/tt.ibd
Total number of page: 128:
Freshly Allocated Page: 91
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 34
File Segment inode: 1

页从36跳到了128,因为已经用完了32个碎片页,新的页会采用区的方式进行空间申请。信息中看到有很多可用页,正好说明这点。

▲溢出行数据存放:INNODB存储引擎是索引组织的,即每页中至少有两行记录,因此如果页中只能存放一行记录,INNODB会自动将行数据放到溢出页中。当发生溢出行的时候,实际数据保存在BLOB页中,数据页只保存数据的前768字节(老的文件格式),新的文件格式(Barracuda)采用完全行溢出的方式,数据页只保存20个字节的指针,BLOB也保存所有数据。如何查看表中有溢出行数据呢?

root@localhost : test 04:52:34>create table t1 (id int,name varchar(10),memo varchar(8000))engine =innodb default charset utf8;
Query OK, 0 rows affected (0.16 sec)

root@localhost : test 04:53:10>insert into t1 values(1,'zjy',repeat('我',8000));
Query OK, 1 row affected (0.00 sec)

查看ibd:

root@zhoujy:/home/zhoujy/jiaoben/read_ibd# python py_innodb_page_info.py /var/lib/mysql/test/t1.ibd -v
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000004, page type <Uncompressed BLOB Page>
page offset 00000005, page type <Uncompressed BLOB Page>
Total number of page: 6:
Insert Buffer Bitmap: 1
Uncompressed BLOB Page: 2
File Space Header: 1
B-tree Node: 1
File Segment inode: 1

从信息中看到,刚才插入的一行记录,已经溢出了,保存到了2个BLOB页中(<Uncompressed BLOB Page>)。因为1页只有16K,又要存2行数据,所以每行记录最好小于8K,而上面的远远大于8K,所以被溢出了。当然这个也不是包括特大字段,要是一张表里面有5个字段都是varchar(512)【多个varchar的总和大于8K就可以】,也会溢出:

root@localhost : test 05:08:39>create table t2 (id int,name varchar(1000),address varchar(512),company varchar(200),xx varchar(512),memo varchar(512),dem varchar(1000))engine =innodb default charset utf8;
Query OK, 0 rows affected (0.17 sec)
root@localhost : test 05:08:43>insert into t2 values(1,repeat('周',1000),repeat('我',500),repeat('丁',500),repeat('啊',500),repeat('噢',500),repeat('阿a',500));

1000+500+500+500+500+500=3500*3>8000字节;行会被溢出:

root@zhoujy:/home/zhoujy/jiaoben/read_ibd# python py_innodb_page_info.py /var/lib/mysql/test/t2.ibd -v
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000004, page type <Uncompressed BLOB Page>
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 6:
Insert Buffer Bitmap: 1
Freshly Allocated Page: 1
File Segment inode: 1
B-tree Node: 1
File Space Header: 1
Uncompressed BLOB Page: 1

<Uncompressed BLOB Page> 页存放真正的数据,那数据页到底存放什么?用hexdump查看:

root@zhoujy:/home/zhoujy/jiaoben/read_ibd# hexdump -C -v /var/lib/mysql/test/t1.ibd > t1.txt

查看ibd:

View Code 

3082 0000c090 00 32 01 10 80 00 00 01 7a 6a 79 e6 88 91 e6 88 |.2......zjy.....|
3083 0000c0a0 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3084 0000c0b0 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3085 0000c0c0 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3086 0000c0d0 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3087 0000c0e0 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3088 0000c0f0 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3089 0000c100 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3090 0000c110 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3091 0000c120 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3092 0000c130 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3093 0000c140 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3094 0000c150 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3095 0000c160 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3096 0000c170 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3097 0000c180 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3098 0000c190 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3099 0000c1a0 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3100 0000c1b0 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3101 0000c1c0 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3102 0000c1d0 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3103 0000c1e0 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3104 0000c1f0 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3105 0000c200 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3106 0000c210 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3107 0000c220 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3108 0000c230 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3109 0000c240 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3110 0000c250 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3111 0000c260 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3112 0000c270 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3113 0000c280 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3114 0000c290 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3115 0000c2a0 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3116 0000c2b0 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3117 0000c2c0 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3118 0000c2d0 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3119 0000c2e0 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3120 0000c2f0 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3121 0000c300 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3122 0000c310 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3123 0000c320 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3124 0000c330 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3125 0000c340 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3126 0000c350 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3127 0000c360 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 |................|
3128 0000c370 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 |................|
3129 0000c380 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 88 91 e6 |................|
3130 0000c390 88 91 e6 88 91 e6 88 91 e6 88 91 00 00 02 1c 00 |................|

文本中刚好是48行,每行16字节。48*16=768字节,刚好验证了之前说的:数据页只保存数据的前768字节(老的文件格式)。

总结1:
通过上面的信息,可以能清楚的知道ibd表空间各个页的分布和利用信息以及表空间大小增加的步长;特别注意的是溢出行,一个页中至少包含2行数据,如果页中存放的行数越多,性能就越好。

************************************
************************************

目的2:
了解表空间如何存储数据,以及对NULL值的存储。

测试2:
在测试前先了解INNODB的存储格式(row_format)。老格式(Antelope):Compact<默认>,Redumdant;新格式(Barracuda):Compressed,Dynamic。
这里测试指针对默认的存储格式。
Compact行记录方式如下:

 |变长字段长度列表(1~2字节)|NULL标志位(1字节)|记录头信息(5字节)|RowID(6字节)|事务ID(6字节)|回滚指针(7字节)|

上面信息除了 "NULL标志位"[表中所有字段都定义为NOT NULL],"RowID"[表中有主键] ,"变长字段长度列表" [没有变长字段] 可能不存在外,其他信息都会出现。所以一行数据除了列数据所占用的字段外,还需要额外18字节。

一:字段全NULL

mysql> create table mytest(t1 varchar(10),t2 varchar(10),t3 varchar(10) ,t4 varchar(10))engine=innodb charset = latin1 row_format=compact;
Query OK, 0 rows affected (0.08 sec)

mysql> insert into mytest values('a','bb','bb','ccc');
Query OK, 1 row affected (0.02 sec)

mysql> insert into mytest values('a','ee','ee','fff');
Query OK, 1 row affected (0.01 sec)

mysql> insert into mytest values('a',NULL,NULL,'fff');
Query OK, 1 row affected (0.00 sec)

测试数据准备完之后,执行shell命令:

root@zhoujy:/usr/local/mysql/test# hexdump -C -v mytest.ibd > /home/zhoujy/mytest.txt

打开mytest.txt文件找到supremum这一行:

0000c070 73 75 70 72 65 6d 75 6d 03 02 02 01 00 00 00 10 |supremum........| ----------->一行,16字节
0000c080 00 25 00 00 00 03 b9 00 00 00 00 02 49 01 82 00 |.%..........I...|
0000c090 00 01 4a 01 10 61 62 62 62 62 63 63 63 03 02 02 |..J..abbbbccc...|
0000c0a0 01 00 00 00 18 00 23 00 00 00 03 b9 01 00 00 00 |......#.........|
0000c0b0 02 49 02 83 00 00 01 4b 01 10 61 65 65 65 65 66 |.I.....K..aeeeef|
0000c0c0 66 66 03 01 06 00 00 20 ff a6 00 00 00 03 b9 02 |ff..... ........|
0000c0d0 00 00 00 02 49 03 84 00 00 01 4c 01 10 61 66 66 |....I.....L..aff|
0000c0e0 66 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |f...............|

解释:
第一行数据:
03 02 02 01/*变长字段*/ ---- 表中4个字段类型为varchar,并且没有NULL数据,而且每个字段君小于255。
00 /*NULL标志位,第一行没有null的数据*/
00 00 10 00 25 /*记录头信息,固定5个字节*/
00 00 00 03 b9 00/*RowID,固定6个字节,表没有主键*/
00 00 00 02 49 01 /*事务ID,固定6个字节*/
82 00 00 01 4a 01 10 /*回滚指针,固定7个字节*/
61 62 62 62 62 63 63 63/*列的数据*/
第二行数据和第一行数据一样(颜色匹配)。
第三行数据(有NULL值)和第一行的解释的颜色对应起来比较差别:

03 02 02 01 VS 03 01 ----------当值为NULL时,变长字段列表不会占用存储空间。
61 62 62 62 62 63 63 63 VS 61 66 66 66 --------- NULL值没有存储,不占空间

结论:当值为NULL时,变长字段列表不会占用存储空间。NULL值没有存储,不占空间,但是需要一个标志位(一行一个)。

二:字段全NOT NULL

mysql> create table mytest(t1 varchar(10) NOT NULL,t2 varchar(10) NOT NULL,t3 varchar(10) NOT NULL,t4 varchar(10) NOT NULL)engine=innodb charset = latin1 row_format=compact;
Query OK, 0 rows affected (0.03 sec)

mysql> insert into mytest values('a','bb','bb','ccc');
Query OK, 1 row affected (0.01 sec)

mysql> insert into mytest values('a','ee','ee','fff');
Query OK, 1 row affected (0.01 sec)

mysql> insert into mytest values('a',NULL,NULL,'fff');
ERROR 1048 (23000): Column 't2' cannot be null

步骤和上面一样,得到的ibd的结果是:

0000c070 73 75 70 72 65 6d 75 6d 03 02 02 01 00 00 10 00 |supremum........|
0000c080 24 00 00 00 03 b9 03 00 00 00 02 49 07 87 00 00 |$..........I....|
0000c090 01 4f 01 10 61 62 62 62 62 63 63 63 03 02 02 01 |.O..abbbbccc....|
0000c0a0 00 00 18 ff cb 00 00 00 03 b9 04 00 00 00 02 49 |...............I|
0000c0b0 08 88 00 00 01 50 01 10 61 65 65 65 65 66 66 66 |.....P..aeeeefff|

和上面比较,发现少了NULL的标志位信息。
结论: NULL值会有额外的空间来存储,即每行1字节的大小。对于相同数据的表,字段中有NULL值的表比NOT NULL的大。

三:1个NULL,和1个''的数据:

mysql> create table mytest(t1 varchar(10) NOT NULL,t2 varchar(10) NOT NULL DEFAULT '',t3 varchar(10) NOT NULL ,t4 varchar(10))engine=innodb charset = latin1 row_format=compact;
Query OK, 0 rows affected (0.02 sec)
mysql> insert into mytest(t1,t2) values('A','BB');
Query OK, 1 row affected, 1 warning (0.01 sec)

步骤和上面一样,得到的ibd的结果是:

0000c070 73 75 70 72 65 6d 75 6d 00 02 01 01 00 00 10 ff |supremum........|
0000c080 ef 00 00 00 43 b9 03 00 00 00 02 4a 15 90 00 00 |....C......J....|
0000c090 01 c2 01 10 41 42 42 00 00 00 00 00 00 00 00 00 |....ABB.........|

和上面2个区别主要在于变长列表和列数据这里。

结论:列数据信息里表明了 NULL数据和''数据都不占用任何空间,对于变长字段列表的信息,和一对比得出:‘'数据虽然不需要占用任何存储空间,但是在变长字段列表里面还是需要占用一个字节<毕竟还是一个‘'值>,NULL值不需要占用”,只是NULL会有额外的一个标志位,所以能有个优化的说法:“数据库表中能设置NOT NULL的就尽量设置为NOT NULL,除非确实需要NULL值得。” 在此得到了证明。

上面的测试都是针对VARCHAR的变长类型,那对于CHAR呢?

CHAR 测试:

root@localhost : test 10:33:35>create table mytest(t1 char(10),t2 char(10),t3 char(10) ,t4 char(10))engine=innodb charset = latin1 row_format=compact;Query OK, 0 rows affected (0.16 sec)

root@localhost : test 10:33:59>insert into mytest values('a','bb','bb','ccc');
Query OK, 1 row affected (0.00 sec)

root@localhost : test 10:34:09>insert into mytest values('a','ee','ee','fff');
Query OK, 1 row affected (0.00 sec)

root@localhost : test 10:34:19>insert into mytest values('a',NULL,NULL,'fff');
Query OK, 1 row affected (0.00 sec)

打开ibd生成的文件:

0000c060 02 00 1b 69 6e 66 69 6d 75 6d 00 04 00 0b 00 00 |...infimum......|
0000c070 73 75 70 72 65 6d 75 6d 00 00 00 10 00 41 00 00 |supremum.....A..|
0000c080 00 0a f5 00 00 00 00 81 2d 07 80 00 00 00 32 01 |........-.....2.|
0000c090 10 61 20 20 20 20 20 20 20 20 20 62 62 20 20 20 |.a   bb |
0000c0a0 20 20 20 20 20 62 62 20 20 20 20 20 20 20 20 63 |  bb  c|
0000c0b0 63 63 20 20 20 20 20 20 20 00 00 00 18 00 41 00 |cc  .....A.|
0000c0c0 00 00 0a f5 01 00 00 00 81 2d 08 80 00 00 00 32 |.........-.....2|
0000c0d0 01 10 61 20 20 20 20 20 20 20 20 20 65 65 20 20 |..a   ee |
0000c0e0 20 20 20 20 20 20 65 65 20 20 20 20 20 20 20 20 |  ee  |
0000c0f0 66 66 66 20 20 20 20 20 20 20 06 00 00 20 ff 70 |fff  ... .p|
0000c100 00 00 00 0a f5 02 00 00 00 81 2d 09 80 00 00 00 |..........-.....|
0000c110 32 01 10 61 20 20 20 20 20 20 20 20 20 66 66 66 |2..a   fff|
0000c120 20 20 20 20 20 20 20 00 00 00 00 00 00 00 00 00 |  .........|

和一的varchar比较发现:少了变长字段列表,但是对于char来讲,需要固定长度来存储的,存不到固定长度,也会被填充满。如:20;并且NULL值也不需要占用存储空间。

混合(varchar,char):

root@localhost : test 11:21:48>create table mytest(t1 int,t2 char(10),t3 varchar(10) ,t4 char(10))engine=innodb charset = latin1 row_format=compact;
Query OK, 0 rows affected (0.17 sec)

root@localhost : test 11:21:50>insert into mytest values(1,'a','b','c');
Query OK, 1 row affected (0.00 sec)

root@localhost : test 11:22:06>insert into mytest values(11,'aa','bb','cc');
Query OK, 1 row affected (0.00 sec)

从上面的表结构中看出:
1,变长字段列表长度:1
2,NULL标志位:1
3,记录头信息:5
4,RowID:6
5,事务ID:6
6,回滚指针:7

idb的信息:

0000c070 73 75 70 72 65 6d 75 6d 01 00 00 00 10 00 33 00 |supremum......3.| 
0000c080 00 00 0a f5 07 00 00 00 81 2d 1a 80 00 00 00 32 |.........-.....2|
0000c090 01 10 80 00 00 01 61 20 20 20 20 20 20 20 20 20 |......a   |
0000c0a0 62 63 20 20 20 20 20 20 20 20 20 02 00 00 00 18 |bc   .....|
0000c0b0 ff be 00 00 00 0a f5 08 00 00 00 81 2d 1b 80 00 |............-...|
0000c0c0 00 00 32 01 10 80 00 00 0b 61 61 20 20 20 20 20 |..2......aa  |
0000c0d0 20 20 20 62 62 63 63 20 20 20 20 20 20 20 20 00 | bbcc  .|

从上信息得出和之前预料的一样:因为表中只有一个varchar字段,所以,变长列表长度就只有:01
特别注意的是:各个列数据存储的信息:t1字段为int 类型,占用4个字节的大小。第一行:80 00 00 01 就是表示 1 数字;第二行:80 00 00 0b 表示了11的数字。[select hex(11) == B ],其他的和上面的例子一样。

上面都是latin1单字节字符集的说明,那对于多字节字符集的情况怎么样?

root@localhost : test 11:52:10>create table mytest(id int auto_increment,t2 varchar(10),t3 varchar(10) ,t4 char(10),primary key(id))engine=innodb charset = utf8 row_format=compact;
Query OK, 0 rows affected (0.17 sec)

root@localhost : test 11:52:11>insert into mytest(t2,t3,t4) values('bb','bb','ccc');
Query OK, 1 row affected (0.00 sec)

root@localhost : test 11:55:34>insert into mytest(t2,t3,t4) values('我们','他们','我们的');
Query OK, 1 row affected (0.00 sec)

ibd信息如下:

0000c070 73 75 70 72 65 6d 75 6d 0a 02 02 00 00 00 10 00 |supremum........|
0000c080 28 80 00 00 01 00 00 00 81 2d 27 80 00 00 00 32 |(........-'....2|
0000c090 01 10 62 62 62 62 63 63 63 20 20 20 20 20 20 20 |..bbbbccc  |
0000c0a0 0a 06 06 00 00 00 18 ff c7 80 00 00 02 00 00 00 |................|
0000c0b0 81 2d 28 80 00 00 00 32 01 10 e6 88 91 e4 bb ac |.-(....2........|
0000c0c0 e4 bb 96 e4 bb ac e6 88 91 e4 bb ac e7 9a 84 20 |............... |

因为表有了主键,所以ROWID(6字节)不见了。
特别注意的是:变长字段列表是3?表里面的varchar类型的列只有2个啊。经测试得出:在多字节字符集的条件下,char类型被当成可变长度的类型来处理,他们的行存储基本没有区别,所以这个就出现变长列表是3了,因为是utf8字符集,占用三个字节。所以一个汉字均占用了一个页中3个字节的空间(”我们“ :e6 88 91 e4 bb ac)。
数据列的信息:
id列的1值,应该是 80 00 00 01,为什么这个显示00 32 01 10,而且所有的id都是00 32 01 10。测试发现,id为自增主键的时候,id的4个字节长度都是以00 32 01 10 表示。否则和前面一个例子里说的,用select HEX(X) 表示。

总结2:
上面的测试都是基于COMPACT存储格式的,不管是varchar还是char,NULL值是不需要占用存储空间的;特别需要注意的是Redumdant的记录头信息需要6个固定字节;在多字节字符集的条件下,CHAR和VARCHAR的行存储基本是没有区别的。

标签:
MySQL,Innodb,存储结构,,存储Null值

免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
桃源资源网 Design By www.nqtax.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。